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Abstract

This paper introduces a robust asymptotic theory of the myopic loss aversion (MLA) index from
microfoundations of behavioral economics and �nance with applications to macroeconomic loss
aversion. It provides several new results and new proofs for old ones. We prove that the MLA
index is independent and identically distributed (iid) � -stable. It mimics jumps in a class of
subordinate L�evy processes induced by loss aversion. We testedthe theory in a tournament
by �tting and ranking a battery of distribution functions to MLA inde x estimates in di�erent
domains. The theory is upheld in every case. Goodness-of-�t tests con�rm that MLA index
meta-study data, MLA index data around the world, and MLA indexe s for intolerance to decline
in standard of living, in the US and South Africa, are leptokurtic and admit the same � -stable
distribution. The South Africa index is explosive during political uncer tainty. In contrast,
the US index is explosive during periods of �nancial market instability and natural disasters.
Statistical tests rejected the 2.25 MLA index value, popularized by behavioural economics and
�nance, for 87.5% of the South Africa iid MLA index estimates. In contrast, the 2.25 value is
acceptedfor 64% of the US iid MLA index estimates. Thus, risk attitudes in South Africa are
markedly di�erent from that in the US. This result implicates Hofsted e's uncertainty avoidance
index which places the US and South Africa in the same \Anglo" category of risk attitudes.
One implication of our study is that the narrow range of values for the MLA index reported in
the behavioural and experimental literature is misleading. For the index should be speci�ed as
a random variable and not as a deterministic parameter.
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1 Introduction

The loss aversion concept, �rst introduced inKahneman and Tversky(1979) original version

of prospect theory (OPT), posits that losses loom larger than gains when a decision maker

(DM) chooses in a mixed lottery or gamble, i.e., one that is comprised ofgains and losses.

That is, a DM is more sensitive to losses than she is to gains of the sameabsolute size. That

concept was subsequently re�ned to include myopic loss aversion (MLA) which involves a

decision maker's (DM's) response to and evaluation of losses incurred over short periods

(Benartzi and Thaler, 1995, p. 75).

Tversky and Kahneman (1992) amended OPT with cumulative prospect theory

(CPT) to address, inter alia, OPT's violation of stochastic dominance.\The key elements

of [OPT] are 1) a value function that is concave for gains, convex for losses, and steeper

for losses than for gains, and 2) a nonlinear transformation of theprobability scale, which

overweights small probabilities and underweights moderate and highprobabilities," (Tversky

and Kahneman, 1992, pp. 297-298). Key CPT amendments include (i) introduction of a loss

aversion index, and (ii) the incorporation of rank dependent utility (RDU) (Quiggin, 1982)

and the nonadditive feature of Choquet expected utility (CEU) theory (Schmeilder, 1989).

In particular Tversky and Kahneman(1992) introduced, speci�ed, and estimated a

utility based loss aversion index{the subject matter of this paper{with data from controlled

experiments. They reported a median value of 2.25 for the loss aversion index estimated in

their study. However, they were silent on the characteristics of the statistical distribution

that led to the median value 2.25. It is known that the median is a consistent estimator of

central tendency for double exponential (Laplace) and Cauchy distributions. The mean and

variance of such distributions may not exist because they are susceptible to extreme values

(Johnson et al., 1994; Kleiber and Kotz, 2003). Somewhat surprisingly, the literature on

decision theory is also silent on the statistical distribution of the lossaversion index.Lopes

(1981) makes the case for the median value as a measure of central tendency in evaluating a

gamble. But she did not specify a statistical distribution function that drives the estimator.
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This paper �lls that gap in the literature. It introduces an asymptotic theory of

the MLA index based on microfoundations of behavioural economicsand �nance. Broadly

speaking, our strategy exploits the Euclidean topology (Dugundji, 1966, p. 63) induced by

reference point(s) popularized byKahneman and Tversky(1979); Tversky and Kahneman

(1992); K}oszegi and Rabin(2006). We identify a simple estimator for the MLA index from

generating sets and we derive its statistical properties. We provethat the statistical distri-

bution of the MLA index is � -stable. In particular, it has a generalized Cauchy distribution

which admits extreme values. Thus, the narrow range of values forthe loss aversion index

induced by controlled laboratory experiments is misleading.

We tested the theory in a tournament by �tting and ranking a battery of distribution

functions to MLA index estimates from the loss aversion index data inthe Fishburn and

Kochenberger(1979) metastudy. We tested it on the distribution of loss aversion indexes

around the world reported in theRieger et al.(2011) study. We also tested the theory with

income and consumption time series data for the US and South Africa. In each case the

theory is upheld. So it is robust across domains.

A comparative analysis of MLA index estimates for intolerance to decline in standard

of living, based on income and consumption data for a developed economy like the US,

and an emerging economy like South Africa, show that the macroeconomic MLA index is

leptokurtic. In South Africa it is explosive during periods of political uncertainty. Vizly, the

Soweto uprising in 1976, P.W. Bothas hardliner Rubicon speech in 1985, and transition to

democracy talks with the ANC in the early 1990s. However, in non-turbulent epochs the

MLA index distribution for South Africa data exhibit mostly gain seeking behaviour with

only a couple years where the index was not statistically di�erent from the median value of

2.25 popularized by behavioural economics.

In contrast, for US data, the macroeconomic MLA index distribution has median

value close to 2.25, and it is less responsive to political uncertainty. It is explosive during

periods of �nancial market instability and natural disasters such as Hurricane Katrina in
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2005, and �nancial disasters such the Great Recession of 2008. To the best of our knowledge,

the MLA index distributions for intolerance to decline in standard of living in the US and

South Africa are new to the literature.

Our analysis shows that risk attitudes in South Africa are markedly di�erent from

that in the US. This result implicates Hofstede's uncertainty avoidance index which places

the US and South Africa in the same "Anglo" category of risk attitudes.1

One important implication of the �ndings in this paper is the MLA index is stochastic.

It constitutes independent and identically distributed jumps of a subordinate L�evy process.

Therefore, it should be modelled accordingly. For example, a seminalpaper by Benartzi

and Thaler (1995) used a starting value of 2.25 in a simulated model to predict that a MLA

index value of 2.7 resolves the equity premium puzzle upon convergence of their algorithm.

An important paper by Bowman et al. (1999) assumed a constant loss aversion index value

of 2.0 in their behavioural challenge to the permanent income hypothesis. More recent,

Merkle (2015) used a ratio of slopes method to \infer loss aversion", and a Wald test to

draw inference, in his study of investor subjective well-being relative to anticipated portfolio

returns. The results in those papers are implicated by the� -stable feature of the MLA index.

For example, the index is a random variable so it is perhaps better speci�ed as a random

coe�cient that accommodates large values, instead of extant speci�cation as a nonstochastic

parameter.

The rest of the paper proceeds as follows. Insection 2we provide the main results

of our asymptotic theory of the erstwhile� -stable MLA index. In section 3we embed the

MLA index in Duesenberry(1949) RIH and identify its estimator. We also show how risk

attitudes in the RIH induce probability distortions that support � -stable distributions. In

section 4we devise a strategy for estimating the MLA index from time series data. We apply

and test the asymptotic theory in di�erent contexts to establish robustness. We conclude in

section 5with some perspectives on avenues for further research.
1Refer to http://www.clearlycultural.com/geert-hofstede-cultu ral-dimensions/uncertainty-avoidance-index/ for a

summary of Hofstede index measures around the world.
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2 Foundations of the myopic loss aversion index estimator

In this section we provide some preliminaries, and we present the microfoundations of our

model in a topological basis set in the Euclidean topology. Whereuponwe derive an existence

theorem for the statistical distribution of the MLA index.

Tversky and Kahneman(1992, p. 32) introduced a robust ratio of slopes procedure

for estimating the loss aversion index. It amounts to a calibration exercise in which subjects

were presented with two simple mixed lotteriesL1 =
�
a; 1

2 ; b; 1
2

�
and L2 =

�
c; 1

2; x; 1
2

�
, where

a nd c are losses,b and x are gains, and1
2 is the corresponding probability of occurrence

for each outcome. They reported the median value ofx which subjects used to establish

equivalence between the two lotteries , i.e.,L1 � L2, for various a; b; ccombinations. They

employed the ratio

� � =
x � b
c � a

(2.1)

as a robust estimator of the loss aversion index.Tversky and Kahneman(1992, p. 310) noted

that \when the possible loss is increased byk the compensating gain must be increased by

about 2k". So � � is a ratio of the slope of gains over the slope of losses in this \compensatory"

framework. This sets the stage for a ratio type estimator for theloss aversion index.

2.1 The empirical myopic loss aversion (MLA) index estimato r

We start with microfoundations of behavioural economics to motivate the theory behind our

MLA index. Let v be CPT's value function bifurcated at a reference pointxr , and separated

by sub-utility functions vg and v` over gain and loss domains respectively. So that ifx is

change in income then we write the value function as

v(x) = vg(x)I f x>x r g � v` (� x)I f x<x r g (2.2)

whereI is an indicator function. Assume the existence of measurement error � with mean 0

and variance� 2
� , i.e., � � (0; � 2

� ), for change of income.
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De�nition 2.1 (Reference point topology). De�ne a small open set centered at the reference

point xr with radius � , asB � (xr ) = f xj jx � xr j < � g. The family T of such open sets forms

a topology in R.

Figure 1: Geometry of MLA estimator
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MLA estimator in an open � disk B � (xr ) for the bifurcated value function
v introduced in Kahneman and Tversky (1979). It collapses to the
K•obberling and Wakker (2005) ratio of slopes estimator when �xG = �xL so

that � =
� L

� G
.

We make the following technical assumption which implies existence of convergent and ap-

proximate probability distributions in B � (xr ). Refer to Gikhman and Skorokhod(1969,

p. 441) for technical entails.

Assumption 2.1 (Existence of approximation). Assume that there exist a compact setK � �

B � (xr ) such that Prf x =2 B � (xr )nK � g < � � where� � # 0.

This assumption accommodates the existence of \bump functions"or molli�ers ( Karatzas
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and Shreve, 1991, p. 206) onK � that vanishes onB � (xr )nK � .

De�nition 2.2 (Molli�er or bump function) . A molli�er or bump function is of type

' (� ) =

8
>><

>>:

C0 exp
�

�
1

a2 � � 2

�
j� j < a

0 o.w

(2.3)

whereC0 is a normalizing constant such thatC0
Ra

� a ' (� )d� = 1.

A �rst order Taylor expansion of (2.2) implies

v(x) = v(xr ) + v0(xr )(x � xr ) + Op(x2) (2.4)

where Op is a function that is bounded in probability.2 The utility based loss aversion

index measure for riskless choice (Tversky and Kahneman, 1991) implied by Tversky and

Kahneman (1992) is � =
v` (� 1)
vg(1)

, and the measure proposed byK•obberling and Wakker

(2005) is � =
v0

` (0
� )

vg(0+ )
.3 Refer to Wakker (2010) for a review of loss aversion index formulae.

Let y = v(x), � = v(xr ), � = v0(xr ) and � = Op(x2). Since xr is \known" we can treat �

and � are parameters. Thus we rewrite (2.4) as a simple linear model:

y = � + � (x � xr ) + � =) �y = ( � � � x r ) + � �x + �� (2.5)

This is the equation of a straight line that passes through the point (�x; �y), with intercept

(� � � x r ). So the MLA index corresponding to� =
v` (� 1)
vg(1)

is given by

� = �
�yL

�yG
= �

(� L � � L xr ) + � L �xL + �� L

(� G � � G xr ) + � G �x + �� G
(2.6)

where the G and L subscripts pertain to gain and loss domains, and the negative signis
2 If � = Op (x2), then by virtue of Assumption 2.1, for some constant C� we have Prfj � j > C � x2g � 2� . SeeChow

and Teicher (1988, p. 255) for details.
3The related concept of probabilistic loss aversion is presented in Schmidt and Zank (2005, 2008). However, that

is outside the scope of the present paper.
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retained so that � �yL > 0 and � �xL > 0 since� is positive. The line in (2.5) passes through

the origin if � � � x r = 0 or the reference pointxr = 0 so �y = � �x. This procedure applies

to gain and loss domains.4 It is depicted in Figure 1 for � > 0. Under the identifying

restriction � � � x r = 0 we have the following empirical measure of the loss aversion index

which corresponds to� =
v0

` (0
� )

vg(0+ )

� = �
�yL

�yG
= �

� L �xL

� G �xG
(2.7)

We summarize the foregoing in the following:

Theorem 2.2 (MLA estimator) . The empirical MLA index estimator in (2.6) pertains

to Tversky and Kahneman(1992) utility ratio formula. Whereas the empirical MLA index

estimator in (2.7) pertains to K•obberling and Wakker(2005) ratio of marginal utility formula

in a small � -neighbourhood of the origin.

Remark 2.1. The identifying restriction � � � x r = 0 implies that the MLA index estima-

tor should produce reasonably close estimates for theTversky and Kahneman(1992) and

K•obberling and Wakker (2005) estimators in (2.6) and (2.7), respectively. However, in eco-

nomic experiments the values produced by those estimators di�er (Abdellaoui et al., 2007,

p. 1662).

2.2 The limit distribution of MLA index

2.2.1 Preliminaries

Before we derive the distribution for� we need the following preliminary de�nitions.

De�nition 2.3 (Generalized Cauchy). A probability density function f is standard Cauchy,

written C(0; 1) if f (x) = 1 = � (1 + x2); �1 < x < 1 . If Y follows a standard Cauchy law,
4 In their reference dependent model, K}oszegi and Rabin (2006, p. 1146) write this relation as � (x) = � x; x > 0

and � (x) = �� x; x < 0 where their � > 0 (our � ) is the weight a subject attaches to \gain-loss utility".
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then Z has a generalized Cauchy lawC(a; b) if Z = b Y + a, where b is a scale anda is a

location parameter.

De�nition 2.4 (Stable distribution). Samoradnitsky and Taqqu(1994). A random variable

X is said to have a stable distribution if for any positive numbersA and B, there is a positive

number C and a real numberD such that

A X 1 + B X 2
d= CX + D (2.8)

whereX 1 and X 2 are independent copies ofX and d= denotes equality in distribution.

Another popular de�nition of � -stable is if X 1; : : : ; Xn are independent and identically dis-

tributions (iid) random variables, and there exist constantscn ; dn such that X 1 + � � � +

X n
dist= cnX + dn where X has the same distribution as theX 0s

i , and cn = n
1
� , 0 < � � 2,

then X is � -stable. An � -stable distribution (such as the normal distribution) retains its

shape up to scalec and shift d after addition. Refer to Samoradnitsky and Taqqu(1994) for

further details.

Theorem 2.3 (� -stable distribution). Samoradnitsky and Taqqu(1994). For any stable

random variableX , there is a number� 2 (0; 2) such that the numberC in (2.8) satis�es

C � = A � + B � (2.9)

The number � is called the index of stability or characteristic exponent. A stable random

variable X with index� is called� -stable.

Proof. SeeFeller (1970, xVI.1, pp. 170-171).

De�nition 2.5 (Spherically symmetric vector). Arnold and Brockett (1992). A random

vector U is said to be spherically symmetric if� U has the same distribution asU (i.e.,

� U � U ) for all orthogonal matrices� .
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De�nition 2.6 (Elliptically symmetric) . Arnold and Brockett (1992). A random vector X

is said to be elliptically symmetric if there exists an invertible matrixA such that X = A U

whereU has a spherically symmetric distribution.

2.2.2 Existence theorem for generalized Cauchy for MLA index

Assume that gains and losses are symmetric around the referencepoint xr . Assumption 2.1

implies the existence of bump functions characterized by a symmetric elliptic distribution

that vanishes outside ofK � .5 Let X = ( X 1; : : : ; X r ; : : : ; Xn)T be an � 1 vector of random

variables for gains and losses with an elliptically symmetric distribution around a reference

point X r . We state the following theorems implied by the foregoing assessment, and provide

proofs in the appendix.

Theorem 2.4 (Standard Cauchy distribution). If U = ( U1; : : : ; Un )T , has a spherically

symmetric distribution, then, for i 6= k Ui =Uk has a standard Cauchy distribution.

Proof. See AppendixA.1.

Theorem 2.5 (Generalized Cauchy distribution). If X = ( X 1; : : : ; X r ; : : : ; Xn )T has an

elliptically symmetric distribution, then, for i 6= k; X i =Xk has a general Cauchy distribution.

Proof. See AppendixA.2.

Theorem 2.6 (Existence of Generalized Cauchy distribution for MLA estimator). Let �U =
� �X L X r

�X G
� T

be a vector comprised of the sample mean of loss and gain values relative

to a reference pointX r . Assume that �U is elliptic symmetric, and de�ne �X = �A �U . There

exist an invertible matrix �A such that �X L = �X G � C(a; b).

Proof. See AppendixA.3.

5Anderson (2003, p. 47) provides analysis for spherical and elliptically sy mmetric distributions. Owen and Ra-
binovitch (1983); Landsman and Valdez (2003) provide applications of symmetric elliptic distribution s in economics
and �nance.
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3 The relative income hypothesis and reference dependent co n-
sumption

The main purpose of this section is to establish a nexus between loss aversion to decline in

the standard of living and the relative income hypothesis (RIH). Thisprovides a basis for

the MLA index theory to be tested. We derive the consumption function under Duesenberry

(1949) RIH, and prove that it is a piecewise linear version ofKahneman and Tversky(1979);

Tversky and Kahneman(1992) value function over gain and loss of income.6 According to

Shea(1995, pp. 798-799) \Under myopia, consumption tracks current income. Thus, the

failure of the [Life Cycle Hypothesis/Permanent Income Hypothesis] should be symmetric:

consumption should respond equally to predictable income increasesand decreases." We use

that observation as a basis for the following

Axiom 1 (Myopia). Under myopia, consumption tracks income.

Figure 17in Appendix B.2 illustrates \myopia" under the \consumption tracking income"

postulate for US nondurable consumption and real disposable income series.

3.1 Reference dependence and the relative income hypothesi s

Let Yt be disposable income,t = 1; : : : ; T, St be savings andCt be consumption of an investor

at time t so Ct + St = Yt . Let M t be the running maximum income measured at timet for

all periods beforet, i.e., M t = max 0<s<t � Ys.

The running maximum M t is critical to our analysis. It is the variable that captures

retrospective standard of living. Moreover, it is an independently important subordinate

income process. For example, if the real income distribution of an individual over the last

�ve years is f 20; 000; 25; 000; 19; 000; 27; 000; 22; 000g, then her maximum is 27; 000. As that

5-year window slides over time it retains the highest maxima attained inretrospect. To see

this, suppose we considered a 10-years period obtained by concatenating the �ve years above

with the following �ve years income distribution f 18; 000; 21; 000; 26; 000; 23; 000; 26; 500g.
6Benartzi and Thaler (1995); Barberis et al. (2001) used related value function speci�cation in their analyse s.
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The highest income in the last set is 26; 500. However, the 5-year rolling window over the

10-years includes

maxf 25; 000; 19; 000; 27; 000; 22; 000; 18; 000g = 27; 000;

maxf 19; 000; 27; 000; 22; 000; 18; 000; 21; 000g = 27; 000;

maxf 27; 000; 22; 000; 18; 000; 21; 000; 26; 000g = 27; 000;

maxf 22; 000; 18; 000; 21; 000; 26; 000; 23; 000g = 26; 000;

maxf 18; 000; 21; 000; 26; 000; 23; 000; 26; 500g = 26; 500

So the highest standard of living attained remained fairly stable at 27,000 until income

systematically dropped in the last 5-years period. If income did not systematically drop over

any 5-year period, it will have only upward jumps. For example, max0<s< 10 Ys = 27; 000.

The �ve years period was arbitrarily chosen. However, it is consistent with evaluation of life

satisfaction over a period of time popularized in the subjective well being literature spawned

by Cantril (1965). Figure 2 depicts a plot of the highest standard of living attained for US

real disposable income over a rolling 5-year window. More will be said about the construction

of that plot in the sequel.

Duesenberry(1949, p. 4) posited the following relative income model7

7

\If in periods of steadily rising income the savings ratio is constant while in depressions the ratio
depends on current income and previous peak income, we can explain saving with the relation St =Yy =
0:25Yt =Y0 � 0:196, where St , and Yt , are current saving and disposable income respectively andY0 is
highest previous disposable income. When �tted to the data, this relation yields a high correlation.
Moreover, it accurately predicts the savings rates of 1947." ( Duesenberry, 1949, p. 4).
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Figure 2: US Relative Income Over 60-months Sliding Window
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RDispIncome DuesenYMax60

Duesenberry's monthly relative incomeM t = max
t � u<s<t

f Ysg is a running

maximum for real disposable incomeYt over a select windowu taken here to
be a 60-months or 5-years sliding window over the period 2000:10{2012:11.
The �rst 5-years of data in the monthly time series between 1995 and 2000 is
used to derive the �rst maximum value 8016.3 above.
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St

Yt
= � 0 + � 1

Yt

M t
; M t = max

0� s� t
f Ysg; � 0 > 0; � 1 > 0 )

Ct

Yt
= 1 � � 0 � � 1

Yt

M t
(3.1)

Yt > M t ) income gain
Yt

M t
= 1 + gG

t (3.2)

Yt = M t ) reference income
Yt

M t
= 1 (3.3)

Yt < M t ) income loss
Yt

M t
= 1 � gL

t (3.4)

where gL
t > 0 and gG

t > 0 are relative-growth rates of income, and� 1 is a sav-

ings rate factor. Note that M t does not include the current period in its evaluation.

In continuous time the evaluation is over 0< s < t � . In discrete time it is 0 <

s < t � 1. We can rewrite (3.1)-(3.4) for change in consumption� bCD
t as follows:

Duesenberry's reference dependent change in consumption

Theorem 3.1.

CD
t =

8
>>>>><

>>>>>:

a(d))Yt + � bCD
t if gain in income

a(d))Yt if reference income

a(d))Yt � � t � bCD
t ; � > 0 if loss of income

(3.5)

� bCD
t = � � 1gG

t Yt ; � t =
jgL

t j
gG

t
; a(d) = 1 � � 0 � � 1 (3.6)

Proof. See ApendixA.4.

Since� t is constrained to be positive by de�nition, we use the absolute valuejgL
t j instead of

gL
t < 0. We formalize the foregoing in the following

Theorem 3.2 (MLA to decline in standard of living). Myopic loss aversion to decline in

standard of living induces asymmetric response to anticipated gains and losses in relative

income.
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In (3.5) a gain in relative income signi�es an increase in savings and decline in consumption

in (3.1). Whereas a loss in relative income induces decreased savings and asymmetric or

\irreversible" increase in consumption in (3.1) (Duesenberry(e.g.,1949, p. 101); andKomlos

(2014)). � t is a reference dependentloss aversion index, and �bCD
t is the piecewise [linear]

change in consumptionconsistent with that in Figure 1. Benartzi and Thaler (1995, p. 83)

and Barberis et al.(2001, p. 12) used a functionally equivalent piecewise linear value function

speci�cation for stock returns in their analyses. In fact, the variable referred to as \historical

benchmark levelZ t " in Barberis and Huang(2001, p. 9) is our M t in (3.1).

3.2 Relative income dynamics for US and South Africa

The US and South Africa data used in the sequel were taken from publicly available data at

the Federal Reserve Bank-St. Louis (FRED database) and the South African Reserve bank

(SARB database).Figure 2 depicts a plot of the RIH for monthly real disposable income in

the US. The standard of livingM t is measured over a 5-year or 60-months rolling window.

It jumps only when there is an increase in real income or it stays 
at otherwise. HenceM t

is a subordinator or subordinate income process. Cursory inspection shows that there was

a persistent decline in the standard of living for at least 5-years after the onset of the Great

Recession of 2008.

Figure 3 depicts US real income growth, and relative income growth. The \pain"

or intolerance associated with a decline in standard of living is re
ected by the exagger-

ated downward growth. According to (3.5) and (3.6) this re
ects loss aversion to decline

in consumption. In other words, the level of happiness or well-beingin the economy has

declined.

Figure 4 is the South Africa analog ofFigure 2. By virtue of Axiom 1 on myopic

consumption tracking income, and without loss of generality, we used semi-durable personal

consumption expenditure in 2010 prices as an instrument for incomesince a suitable in-

come series was unavailable at the SARB website. Cursory inspectionshows that with few

14



exceptions, the \consumption ratchet" is persistent.

Figure 5 depicts the growth rates in quarterly personal consumption expenditure

(ZA PCE) for 2010 base year for South Africa. The shaded regionscoincides with the

Soweto uprisings around 1976; P. W. Botha's hardliner Rubicon speech in 1984, prelude to

democracy talks with the ANC in the early 1990s, and the Great Recession in 2008. Thus,

political uncertainty drives the MLA index implied by Figure 5. Loss aversion accentuates

the decline in growth rates.

Figure 3: US Relative Income Growth Over 60-months Sliding Window
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DuesenUSYMax60Growth RUSDispLnIncomeGrowth

Duesenberry's US monthly relative income growth is computed from
gt = ln( Yt ) � ln(M t ) where M t = max

t � u<s<t
f Ysg is a running maximum for

real disposable incomeYt over a select windowu taken here to be a
60-months or 5-years sliding window over the period 2000:10{2012:11.
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Figure 4: South Africa's Relative PCE Over 20Q Sliding Window
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Semidurable personal consumption expenditure (PCE) in 2010 prices is used as an instrument for
South Africa's quarterly relative income. M t = max

t � u<s<t
f Ysg is a running maximum for the income

instrument Yt over a select windowu taken here to be a 20-quarters or 5-years sliding window
over the period 1960:1-2014:1. The �rst 20-quarters or 5-years of data in the quarterly time series
is used to derive the �rst maximum value.
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Figure 5: South Africa's Relative PCE Growth Over 20Q Sliding Window
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ZA Rolling 5yrs Impact of Loss Aversion to Decline in Growth of Standard of Living

ZA (Semidurable) Personal Consumption Expenditure  Growth Rate in 2010 Prices

South Africa's quarterly relative PCE growth in 2010 prices is computed from
gt = ln( Yt ) � ln(M t ) where M t = max

t � u<s<t
f Ysg is a running maximum for the

PCE instrument for income Yt over a select windowu taken here to be a
20-quarters or 5-years sliding window over the period 1960:1-2014:1.
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Figure 6: Distribution of US Real Disposable
Income Growth

Figure 7: Distribution of US Real Disposable
Relative Income Growth
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Figure 8: Distribution of South Africa Real semidurable
PCE Growth

Figure 9: Distribution of South Africa semidurable
Relative PCE Growth
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3.3 Preference for skewness in US and South Africa income gro wth

Figure 6represents the distribution of US real income growth �tted to a battery of candidate

probability density functions. All the �tted distributions are leptok urtic{a characteristic

of � -stable distributions. Moreover, the Cauchy distribution emergesas one of the best

�tted distributions. We applied the RIH procedure inhered in Theorem 3.2 to generate

a distribution of income growth relative to a 5-years standard of living. And we �tted a

battery of probability distributions to the transformed distributio n as shown inFigure 7.

Cursory inspection shows that the� -stable prediction in Theorem 2.6 for the MLA index

also has currency.

Figure 8 depicts the probability distribution functions �tted to South Africa PCE

growth data. Again, thee Cauchy distribution emerges as a �tted probability distribution

function.

In Appendix B.3 and Appendix B.4, Figure 18 and Figure 19 depict a \re
ection

e�ect" ( Kahneman and Tversky, 1979, p. 268) for growth rates. That is, the signs of the

growth rates are changed. Substitution of the re
ection growthrates would reverse the

direction of the skew in the analysis above.

4 Applications to income and consumption growth

In this section we provide a simple apparatus for estimating the MLA index with time series

data for income and consumption We derive a \marked MLA index process" and introduce

some new results and econometric tests for MLA index behaviour.

Data on real income and consumption growth are characterized byruns. For example,

in periods of increasing income we can expect to see runs of positive relative income growth

gG
t . For falling incomes, we would see runs of negative income growthgL

t . These runs are

manifestations of information based economic activity. Assume that there are a total of K

non-zero runs each of lengthnk in generated by an arbitrary time series of lengthT, where
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k = 1; : : : ; K andT = n1+ � � �+ nK . According to (3.6) the loss aversion index is characterized

by a gain-loss pair (gG
t ; gL

t ). De Neve et al.(2015, p. 19) used the phrase \macroeconomic

loss aversion" to recommend that \future research should consider positive and negative

economic growth rates separately in piecewise analyses in order to more accurately interpret

the gradient for the general relationship between economic growth rates and subjective well-

being." That statement is functionally equivalent to Theorem 2.2. Thus, we propose the

following estimation strategy for the \macroeconomic loss aversion" index in our study.

4.1 Construction of empirical MLA index process

We illustrate the procedure for implementing Theorem2.2in discrete time with the following

example. Suppose thatgL
� 3; gL

� 2; gL
� 1| {z }

block of losses

; 0; gG
1 ; gG

2| {z }
block of gains

is an observed sequence of losses (gL < 0),

and gains (gG > 0) adjacent to, and separated from, each other by the local reference point

0, i.e.,gL
� 1 < 0 < g G

1 . The negative subscript is used to highlight the fact that the runs are to

the left of 0. Each run of gains or losses constitutes a block. Here �gL = ( gL
� 3 + gL

� 2 + gL
� 1)=3 is

the average over the run (or block) of losses; and �gG = ( gG
1 + gG

2 )=2 the average over the run

(or block) of gains. According to Theorem2.2, the MLA index estimator in correspondence

with the joint block of gains and losses isb� = � �gL =�gG. We reiterate with a numerical

example. Consider the sequence of losses and gains:� 0:04; � 0:02; � 0:03; 0; 0:01; 0:02.

Here �gL = � (0:04 + 0:02 + 0:02)n3 = � 0:03 and �gG = (0 :01 + 0:02)n2 = 0:015. Hence

b� = � (� 0:03n0:015) = 2:0. We abstract from this procedure below.

Axiom 2 (Blocks of growth). Every economic time series generates blocks of negative (loss)

and positive (gain) growth.

Let gL
t2k � 1
i

be the observation at timet i included in the 2k � 1 \marked block" of

losses. For notational convenience we writet2k� 1
i instead of � t2k� 1

i . It being understood

that the observed block of negative growth (gL < 0) is to the left of the local reference point

0. SogL
t2k � 1
i

is the \marked observation" at time t2k� 1
i where the latter should read timet i
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in the \marked block" 2k � 1 for i = 1; 2; : : : ; n2k� 1. Let gG
t2k
j

be the observation at timet j

included in the adjacent 2k block (separated by 0) of gains wherej = 1; 2; : : : ; n2k . Here,

the observed block of positive growth (gG > 0) are to the right of the local reference point

0. We use even and odd subscripts for blocks to emphasize their non-overlapping feature.

De�nition 4.1 (Topology of gains and losses). Let B L
2k� 1 and B G

2k be adjacent sets or

marked blocks of losses and gains, respectively, in a univariate time series of growth rates of

length T = n1 + � � � + nK . Let N = f n1; : : : ; nK g be the set of block lengths. Son2k� 1 2 N

is the number of observations inB L
2k� 1, and n2k 2 N is the number of observations inB G

2k .

Thus, we have

B L
2k� 1 = f gL

t2k � 1
1

; : : : ; gL
t2k � 1
n 2k � 1| {z }

block of losses

g; B G
2k = f gG

t2k
1

; : : : ; gG
t2k
n 2k| {z }

block of gains

g (4.1)

B T =
M

k

B 2k� 1; 2k ; B 2k� 1; 2k =
�

B L
2k� 1 � f 0g � B G

2k

	

| {z }
MLA index generator

(4.2)

B 0 = f g = 0j g 2 B T g �
K\

k=1

B 2k� 1; 2k (4.3)

where � is a concatenation operation de�ned so that

B 2k� 1; 2k = B L
2k� 1 � f 0g � B G

2k =
n

gL
tk � 1
1

; : : : ; gL
tk � 1
n 2k � 1

; 0; gG
t2k
1

; : : : ; gG
t2k
n 2k

o

and
L

is the over arching concatenation operation that reconstructs the entire time series

B T . HereB 0 is the zero set or reference set common to all blocks.

Implicit in de�nition 4.1 is the presumably negligible event

eB 0 = f gL
t2k � 1
i

= 0 or gG
t2k
j

= 0g; i = 1; 2; : : : ; n2k� 1; j = 1; 2; : : : ; n2k (4.4)

Here, eB 0 contains the event of zero growth included in a block of losses or gains where such

zero growth is not a reference point. That is, it does not separate gains and losses but is
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contained in a gain or loss sequence accordingly. The foregoing gain-loss topology set the

stage for the following

Theorem 4.1 (Empirical MLA index) . Let B T be an observed sequence of growth rates(g)

for income. De�ne the arithmetic mean growth for a block of gains (G) and losses (L) as

follows:

�gL
n2k � 1

=

P n2k � 1
i =1 gL

t2k � 1
i

n2k� 1
; gL

t2k � 1
i

2 B L
2k� 1 (4.5)

�gG
n2k

=

P n2k
j =1 gG

tk
j

n2k
; gG

t2k
j

2 B G
2k (4.6)

The empirical myopic loss aversion index estimator generated byB 2k� 1; 2k is given by:

b� k� 1 =
�gL

n2k � 1

�gG
n2k

; k = 1; : : : ; K; � 0 = 0 (4.7)

In particular, the sequence of ordered pairs(�gL
n1

; �gG
n2

); : : : ; (�gL
n2k � 1

; �gG
n2k

) generates the distri-

bution f b� 1; : : : ; b� K � 1g of MLA estimates.

Remark 4.1. In this setup, the sequence always starts with a block of losses followed by a

block of gains{the two blocks being separated by 0 and so on. One weakness of the procedure

is that it is sensitive to thee starting point. So di�erent starting points can generate di�erent

MLA index estimates.

By virtue of the above, we claim thatb� k� 1 is iid.

Proposition 4.2 (MLA index independence). The MLA indexes b� k� 1 generated by

B 2k� 1; 2k ; k = 1; : : : ; K are independent and identically distributed.

Proof. See AppendixA.5.

4.1.1 Functional implications of lognormally distributed income

In keeping with the literature on income and consumption, we assumethat income is

lognormally distributed (see Battistin et al. (2009) for a recent review of the litera-
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ture). Thus, we assumeY � ln N (� y; � 2
y) with probability density function f (y) =

�
y�

p
2�

� � 1
exp

�
�f ln y� �

2� 2
y

g
�

. See e.g.,Borowiak and Shapiro(2014, p. 26) for details. Thus,

if Y = 1 at the start of a given period, andg is income growth over the period, then at the

end of the periodY = 1 + g and lnY = ln(1 + g) � g � N (� y; � 2
y). Accordingly, we make

the following

Assumption 4.3 (Lognormal income). Income Yt is lognormally distributed, and income

growth gY is normally distributed.

It is known that if the numerator and denominator in (4.7) are normally distributed

then b� k has a standard Cauchy distribution characterized by probability density function

f (� ) = [ � (1 + ( � � � )2)]� 1, where � is a measure of location, and the sample median

b� :5 � AN
�

� :5;
� 2

4n

�
is an asymptotically normal consistent estimator for sample sizen

(Ser
ing, 1980, p. 85). However, the numerator and denominator are drawn from a truncated

normal. Vizly, gains from the right half, losses from the left half. By symmetry, gains and

losses are drawn from the same law (C� inlar , 2011, p. 331). So the ratio is actually a truncated

or generalized Cauchy distribution which lies entirely in the positive quadrant. Thus, our

estimator is consistent with the predictions of Theorem2.6. We summarize this formally.

Proposition 4.4 (Statistical test for MLA index) . Let Y 2 B T be a lognormally distributed

realization of income with growth rategY � N (� y; � 2
y) in the reference point basis setB � (� y)

under assumption 2.1. Let � y be a reference point, and de�negL = I f gY <� y g and gG =

I f gY >� y g. We claim that b� � C(a; b) with sample medianb� :5 � AN
�

� :5;
� 2b2

4n

�
.

Proof. See Theorem2.6 and Walck (2007, Ch. 7, p. 31).

Remark 4.2. In practice b is replaced by a maximum likelihood estimate (MLE)
4
b. For

robust tests b =
1
2

(Q3 � Q1) where Q3 � Q1 is the interquartile range forb� . We set b = 1

for standard Cauchyb� � C(0; 1) so b� :5 � AN
�

� :5;
� 2

4n

�
.

Motivated by Theorem 2.6 we introduce the following processes.
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De�nition 4.2 (Subordinator). (C� inlar , 2011, p. 279) Let S = ( St )t2 R+ be an increasing

right-continuous stochastic process with state spaceR+ and S0 = 0. It is said to be an

increasing L�evy process (or subordinator) if

(a) the increments St1 � St0 , St2 � St1 ,: : : ; Stn � Stn � 1 are independent forn � 2 and

0 � t0 < t 1 < � � � < t n , and

(b) the distribution of the increment St+ uSt is the same as that ofSu for every t and u in

R+ .

The property (a) is called the independence of increments, and (b)the stationarity of the

increments.

De�nition 4.3 (Cauchy process). (C� inlar , 2011). Let (
 ; F ; P) be a probability space

where 
 is a sample space,P is a probability measure on 
, and F is the � -�eld of Borel

measurable subsets of 
. LetTa be the �rst crossing time of levela for the running maximum

of a Brownian motion B t , i.e., M t (! ) = max 0� s� t Bs(! ) for some! 2 
. Thus, we have

Ta(! ) = inf f t > 0; M t (! ) > ag (4.8)

M t (! ) = inf f a > 0; Ta(! ) > t g (4.9)

If Wt (! ) is a Brownian motion independent ofB t (! ), then Cu
t (! ) = WTa (! ) is a Cauchy

process that depends on the subordinatorTa.

The next proposition follows readily from Theorem 2.6, Proposition 4.2, and Proposition

4.4

Proposition 4.5 (MLA index as Cauchy r.v). The MLA index estimator b� is a Cauchy

random variable (r.v.).

Proof. See AppendixA.6.

Remark 4.3. Hoyle (2010) describes the underlying pdf as one for a drift less Cauchy process

with \activity rate" c.
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Assumption 4.3 implies that Yt admits a Geometric Brownian motion (GBM). Thus,

the Cauchy process induced by lognormally distributed income can bemodelled as a subor-

dinate or time changed GBMCu
t (! ) = W Y

Ta
for some GBMW Y

t (! ). Refer to Karatzas and

Shreve(1991, p. 174) for details on time changed Brownian motion. Hence, Axiom1 implies

that intolerance to decline in standard of living can be modelled as the running maximum

of a Cauchy process. We state that formally as

Proposition 4.6 (Intolerance to decline in standard of living). If CY
t (! ) is the Cauchy pro-

cess induced by myopic loss aversion, then the subordinate processCY ?

t (! ) = max 0<s<t CY
t (! )

mimics a decision maker's intolerance to decline in standard of living.

4.2 Statistical tests of MLA index estimator theory

In this subsection we provide the results of statistical tests of our � -stable theory of the

MLA index. The tests are applied to published data from surveys, a meta study, and our

own estimates.

4.2.1 Fitting the distribution of MLA indexes around the world

To illustrate the robustness of our theory, we analyze the MLA index estimates for loss

aversion around the world published inRieger et al. (2011, Table 2, p. 7). The data is

reproduced in AppendixB.1. Those numbers were generated from hypothetical choices in a

survey instrument administered to mostly university students in forty-�ve di�erent countries.

All the index values are greater than or equal to 1.0 with a maximum of5.5 reported for

Georgia.
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Table 1: Diagnostics for MLA index around the world

Statistic Value Percentile Value
Sample Size 45 Min 1
Range 4.5 5% 1.132
Mean 2.0731 10% 1.318
Variance 0.63346 25% (Q1) 1.635
Std. Deviation 0.7959 50% (Median) 2
Coef. of Variation 0.38392 75% (Q3) 2.06
Std. Error 0.11865 90% 3.132
Skewness 2.2889 95% 3.832
Excess Kurtosis 7.3994 Max 5.5

The descriptive statistics inTable 1 indicate that the distribution of MLA index estimates

is skewed (skewness coe�.=2.2889) and leptokurtic (excess kurtosis = 7.3994). Figure 10

shows the ten best distributions �tted to the world MLA index data. All the distributions are

members of the� -stable class popularized in the actuarial science and economics literatures

(Samoradnitsky and Taqqu, 1994; Kleiber and Kotz, 2003). In fact, the generalized Cauchy

distribution with MLE scale
4
� = 0:21558, and MLE location

4
� = 1:9422), is ranked as the

best �tting distribution by the Kolmogorov-Smirnov and Chi-squared goodness of �t tests,

and ranked as the fourth best �tted distribution by the Anderson-Darling8 goodness of �t

test.

8This is a nonparametric goodness of �t test that is sensitive to tail behaviour in distributions. Refer to Anderson
and Darling (1954).
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Figure 10: Probability distribution of MLA index around the world

The top of the Cauchy distribution was cut-o� in the computer generated plot because it was so much higher that that for other
candidate distribution in the � -stable class.
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4.2.2 Fitting the Fishburn-Kochenberger MLA index metatstudy data

Kahneman and Tversky(1979, p. 280) referenced theFishburn and Kochenberger(1979)

metastudy as one of many pieces of evidence which supports their loss aversion theory.

The MLA index estimates in that metastudy were generated from data points collected

from eyeballing plots in published papers. Thus, the data is quite noisy. Nonetheless, they

employed a procedure related to Theorem2.2 in this paper to estimate local piecewise linear

(\two-piece") utility functions. The majority of functions were concave over gains and convex

over losses. The Fishburn-Kochenberger procedure provides contrast to the distribution of

MLA indexes obtained from hypothetical choice data in survey instruments in the Rieger

et al. (2011) study described above.
Table 2: Diagnostics for Fishurn-Kochenberger

MLA index metastudy data

Statistic Value Percentile Value
Sample Size 30 Min 0.8
Range 164.4 5% 1.295
Mean 12.34 10% 1.83
Variance 876.65 25% (Q1) 2.825
Std. Deviation 29.608 50% (Median) 4.85
Coef. of Variation 2.3994 75% (Q3) 7.725
Std. Error 5.4057 90% 22.96
Skewness 5.0684 95% 87.925
Excess Kurtosis 26.809 Max 165.2

The descriptive statistics inTable 2are for the loss aversion index estimates reported inFish-

burn and Kochenberger(1979, Tales 1A, 1B, pp. 508-509) for their two-piece linear (L � L+ )

local utility function. Conceptually, the \two-piece (L � L+ )" is functionally equivalent to

that depicted in Figure 1. The statistics show that the index is right skewed and extremely

leptokurtic.
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Figure 11: Fitted distributions for MLA index metastudy
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The Fishburn and Kochenberger(1979) data were best �tted to a Log Pearson Type III

distribution ( p = 0:32514 for Anderson-Darling goodness of �t statistic). However,the data

admits a generalized Cauchy distribution
4
� = 1:9938

4
� = 4:1153 which was not rejected at

the p = 0:20 level for the Kolmogorov-Smirnov and Chi-squared test statistic. Fishburn and

Kochenberger(1979) also reported extreme values for the loss aversion index, i.e.,� = 3300,

� = 1 for a two-piece exponential (E � E + ) local utility function. However, that functional

form is not part of the analysis depicted inFigure 1.

Figure 12: Pseudo time series plot of US MLA index
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Duesenberry's loss aversion index in (3.5) is estimated over monthly real disposable income in US
by dividing the average relative growth rate for loss of income by the average relative growth rate
for gains in income for 60-months sliding windows between 2000:10 and 2012:11. The loss
aversion index is time and state dependent. Its value is back�lled and displayed in the plot over
periods with loss of income.
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4.2.3 US MLA index for intolerance to decline of standard of living

Figure 12depicts a plot of the empirical MLA index for US monthly real income computed

according to Theorem 4.1. The plot is based on a \marked time series" constructed by

replacing the elements of eachB L
2k� 1 set with the loss aversion indexb� k� 1 generated from

B 2k� 1; 2k . The observations in theB G
2k component of that block were \zeroed out". In

that way the MLA index only corresponds to loss domain. That procedure gave the plot a

tableau look over losses. The explosive values for the index in in around 2004 coincides with

Hurricanes Charlie and Ivan which resulted in many deaths. Hurricane Katrina was even

more devastating in 2005. In 2008, the Great Recession 2008 with prolonged e�ect.

Table 3provides descriptive statistics for the US MLA index estimated in accord with

Theorem 4.1. The excess kurtosis of 6.3515 con�rms that the MLA index is leptokurtic.

Even though the median MLA index value of 1.9163 is consistent with that reported in the

behavioural and experimental economics literature, the mean is over 3 times as large and

the variance is quite high. These are characteristics of an� -stable distribution.

Table 3: Diagnostics for US MLA index

Statistic Value Percentile Value
Sample Size 14 Min 0.13896
Range 33.862 5% 0.13896
Mean 6.2046 10% 0.14787
Variance 85.959 25% (Q1) 0.90275
Std. Deviation 9.2714 50% (Median) 1.9163
Coef. of Variation 1.4943 75% (Q3) 8.2694
Std. Error 2.4779 90% 25.349
Skewness 2.4209 95% 34.001
Excess Kurtosis 6.3515 Max 34.001

Figure 13 is an empirical plot of the US MLA index series adjusted for the median

MLA index value of 2.25. So that f (b� ) = 1 n[� (1 + ( b� � 2:25)2)]. The plot provides a

visual image for the descriptive statistics inTable 3. However, the MLE estimates for a

generalized Cauchy distribution returned
4
� = 1:4716 for the scale parameter, and

4
� = 1:6182

for measure of location. Three popular goodness of �t measures:Kolmogorov-Smirnov,

32



Anderson-Darling, and Chi-squared tests, upheld the generalizedCauchy �t at the p = 0:05

level.

Proposition 4.2 posits that the MLA index is independent. Consequently, we should

not �nd autocorrelation between them. To test this hypothesis weran a simple autoregression

which produced

b� t2k � 1;2k = 1:76
(p=0 :048)

� 0:245
(p=0 :438)

b� t2k � 3;2k � 2 (4.10)

where the subscripts forb� emphasize that MLA indexes were estimated in accord with the

set B 2k� 1; 2k ; k = 1; : : : ; K . The proposition is upheld at thep = :05 level. The intercept

term is statistically signi�cant at p = 0:05 but the coe�cient on the autoregressive term

is not statistically di�erent from 0 at the p = 0:438 level, i.e., we could not reject the null

hypothesisH0 : � = 0. Figure 20in Appendix B.5 provides a plot of the relationship.

Figure 13: Empirical distribution of US MLA index
f (b� ) = 1

� [1+( b� � 2:25)2 ]
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Table 4: Cauchy test for US MLA index
H0 : � = 2 :25 vs: Ha : � 6= 2 :25

Loss Aversion Index US Z-scorea P-value Z-scoreb P-value Z-scorec P-value
2.071649094 -0.424834189 0.335478776*** -0.130139867 0.448227885*** -0.121195234 0.4517682***
3.040267584 1.882427716 0.029888983*** 0.576645896 0.282089344*** 0.537012492 0.295629493***
0.138960041 -5.028524782 2.47134E-07 -1.540392842 0.061732313*** -1.434520222 0.075711931***
1.760777186 -1.165335138 0.121941681*** -0.356978236 0.36055405*** -0.332442793 0.369777465***
0.203805358 -4.87406239 5.46632E-07 -1.493076229 0.067708617*** -1.390455723 0.082195268***
7.171284087 11.72256304 0 3.590984031 0.000164716 3.344172389 0.000412642
16.69620192 34.41104184 0 10.5411676 0 9.81666344 0
0.156774472 -4.986090575 3.08066E-07 -1.52739393 0.063331542*** -1.422414738 0.077452944***
9.072612087 16.25155119 0 4.978353335 3.20638E-07 4.636186523 1.77448E-06
1.653350981 -1.421225764 0.077625568*** -0.435365458 0.331648589*** -0.405442389 0.342576179***
1.761011665 -1.164776608 0.122054715*** -0.356807141 0.360618095*** -0.332283457 0.369837615***
34.00091144 75.63108615 0 23.1681435 0 21.57577564 0
8.001603231 13.70039409 0 4.196854924 1.35324E-05 3.908401217 4.64545E-05
1.13573267 -2.654199347 0.003974842 -0.813063443 0.208090842*** -0.757180844 0.224470763***

*** not signi�cant at p=0.01 n=14

Q1 = 1:265137248 Q2 = 1:916330379 Q3 = 7:794023445 Q4 = 34:00091144

a Z =
b� � 2:25

r
� 2

4n

for standard Cauchy b Z =
b� � 2:25

r
� 2

� 1
2(Q3 � Q1)

�

4n

for robust Cauchy c Z =
b� � 2:25
s

� 2 4
�

2

4n

for generalized Cauchy

with MLE
4
� for scale measure
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Table 4provides further diagnostic tests for the MLA index. We comparedtest results

for the median-value hypothesisH0 : � = 2:25 vs. Ha : H0 not true, for three variations

of the asymptotic distribution for the sample median of a Cauchy distribution: standard

Cauchy, robust Cauchy, and generalized Cauchy. Keeping in mind that the tests statistics

contemplate large samples while our sample size is small atn = 14. At the p = 0:01 level

the standard Cauchy failed to rejectH0 in �ve out of fourteen or 26% of the MLE index

estimates. In contrast, the robust Cauchy and its MLE counterpart upheld nine out of

fourteen or 64% of the estimated MLA index values.

In this case the standard Cauchy over rejectedH0. This may be because that test

statistic fails to take the scale parameter into account. The scale parameter is related to

the interquartile range for the robust Cauchy statistic, and it in
uences the MLE Cauchy

statistic. However, it may be interesting to see which of these testhave higher power against

the null.

4.2.4 ZA MLA index for intolerance to decline of standard of living

Figure 14depicts a plot of the empirical MLA index for South Africa quarterly semidurable

PCE data computed according to Theorem4.1. 9 Cursory inspection of the plot shows

that it is explosive around the time of the Soweto uprisings in 1976, P.W. Botha's hardliner

Rubicon speech around 1985, and pre-democracy talks with the African National Congress

(ANC) in the early 1990s. Thus, the index is sensitive to political uncertainty.

9We restate here the description used in subsubsection 4.2.3The plot is based on a pseudo time series which was
constructed by replacing the elements of eachB L

2k � 1 with the loss aversion index b� k � 1 computed from concatenation
block B 2k � 1; 2k . The observations in the B G

2k component of that block were \zeroed out". In that way the MLA
index only corresponds to losses. That procedure gave the plot a tableau look over losses.
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In this case the standard Cauchy and MLE Cauchy upheld the same values at thep = 0:05

level. For US data, the two tests statistics did not agree on the same MLA index values.

Table 5: Diagnostics for South Africa MLA index

Statistic Value Percentile Value
Sample Size 16 Min 0.07807
Range 20.315 5% 0.07807
Mean 2.4611 10% 0.09636
Variance 26.705 25% (Q1) 0.27523
Std. Deviation 5.1677 50% (Median) 0.66892
Coef. of Variation 2.0997 75% (Q3) 1.5212
Std. Error 1.2919 90% 11.842
Skewness 3.2348 95% 20.393
Excess Kurtosis 10.911 Max 20.393

A weak form test of Proposition 4.2 for MLA index independence was conducted

with a simple autoregression which produced

b� t2k � 1;2k = 2:90
(p=0 :090)

� 0:116
(p=0 :679)

b� t2k � 3;2k � 2 (4.11)

where the subscripts forb� emphasize that MLA indexes were estimated in accord with the

set B 2k� 1; 2k ; k = 1; : : : ; K . The intercept term is statistically signi�cant at the p = 0:10

level. However, the coe�cient on the autoregressive term is not statistically di�erent from 0

at the p = 0:679 level. A plot of this relationship is presented in AppendixB.6.

Figure 15is an empirical plot of the South Africa MLA index series adjusted forthe

median MLA index value of 2.25. So thatf (b� ) = 1 n[� (1 + ( b� � 2:25)2)]. The plot provides

a visual image for the descriptive statistics inTable 5. The MLE estimates for a generalized

Cauchy distribution for South Africa data are
4
� = 0:36797 for the scale parameter, and

4
� = 0:57702 for measure of location. Three popular goodness of �t measures: Kolmogorov-

Smirnov, Anderson-Darling, and Chi-squared tests, uniformly upheld the generalized Cauchy

�t at the p = 0:05 level.
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Figure 15: Empirical distribution of South Africa MLA index
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Table 6 displays the results of statistical tests for whether South AfricaMLE index values

are statistically equivalent to the median value of 2.25. The robust Cauchy test uniformly

rejected the South Africa MLA index values as being statistically equivalent to 2.25. The

standard Cauchy and MLE Cauchy upheld the null hypothesis in only two of the sixteen

or 12.5% of the values atp = 0:05. Most of the MLA index values were less than 1. This

implies that South Africans tend to be risk (gain) seeking (Wakker, 2010). That is, their

utility function is convex over gain domain and steeper than that forloss domain. In the

context of (3.5) this implies that the impact of loss of income on consumption is much lower

than it would be for a similar loss in the US.
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Table 6: Cauchy test for South Africa MLA index
H0 : � = 2 :25 vs: Ha : � 6= 2 :25

Loss Aversion Index ZA Z-scorea P-value Z-scoreb P-value Z-scorec P-value
0.375921603 -4.77230145 9.10663E-07 -10.79088648 1.90053E-27 -5.093019532 1.76203E-07
0.241664476 -5.114184416 1.5755E-07 -11.56393493 3.13826E-31 -5.457878424 2.40929E-08
0.637231784 -4.106880537 2.00519E-05 -9.286270392 7.98947E-21 -4.382879625 5.85604E-06
0.653345363 -4.065847647 2.39291E-05 -9.193488897 1.90151E-20 -4.339089158 7.15372E-06
0.782003075 -3.738223473 9.26626E-05 -8.452681697 1.42344E-17 -3.989447305 3.31137E-05
0.104196035 -5.464244927 2.32441E-08 -12.35547404 2.27533E-35 -5.831464426 2.74715E-09
8.177276227 15.09368497 0 34.12907645 0 16.10804203 0
1.07967304 -2.980213132 0.001440239 -6.738707083 7.99011E-12 -3.180495584 0.000735117
1.668433819 -1.480946119 0.069310466** -3.348640404 0.000406046 -1.580471726 0.056999438**
20.39275185 46.2001382 0 104.465414 0 49.30497553 0
0.229222009 -5.145868898 1.33143E-07 -11.63557828 1.35871E-31 -5.491692232 1.9905E-08
2.685613422 1.109280471 0.133654604** 2.508248852 0.006066559 1.183828633 0.118240453**
0.078074308 -5.530763358 1.5942E-08 -12.50588215 3.4663E-36 -5.902453167 1.79068E-09
0.684503331 -3.986504533 3.35269E-05 -9.014082265 9.92628E-20 -4.254413864 1.04799E-05
0.51411166 -4.42040336 4.92584E-06 -9.995192328 7.99882E-24 -4.717472457 1.19396E-06
1.074078184 -2.994460316 0.001374654 -6.770922096 6.39821E-12 -3.195700238 0.00069746

** not signi�cant at p=0.05 n=16
Q1 = 0:342357321 Q2 = 0:668924347 Q3 = 1:226863235 Q4 = 20:39275185

a Z =
b� � 2:25

r
� 2

4n

for standard Cauchy b Z =
b� � 2:25

r
� 2

� 1
2(Q3 � Q1)

�

4n

for robust Cauchy

c Z =
b� � 2:25
s

� 2 4
�

2

4n

for generalized Cauchy with MLE
4
� for scale measure
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5 Conclusion

This paper �lls a gap in the literature by introducing an asymptotic theory of prospect the-

ory's myopic loss aversion (MLA) index. It produces several new results that are important

in their own right. We prove that the MLA index is � -stable, and that it follows a generalized

Cauchy law in most cases. Because a Cauchy process belongs to theclass of L�evy processes,

our theory expands the solution space for loss aversion to include its embedding in L�evy type

processes.

We provide a simple procedure for estimating the MLA index from economic time

series data from microfoundations. We embed the theory in the relative income hypothesis

(RIH). Whereupon the procedure was applied to US and South Africa income and consump-

tion data. A distribution of macroeconomic MLA indexes was computed for each country,

and a battery of statistical tests upheld the� -stable law prediction predictions of our theory.

We checked for robustness of the theory by applying it to di�erentdomains such as MLA

index data from around the world, and MLA index data from a meta study. In each case,

the theory was upheld.

Further research includes identifying the small sample properties of the MLA index

estimator to facilitate statistical inference in economic experiments. A natural extension of

our results is to global economic time series in order to identify and compare global risk

attitudes. In related work, we show that cross sectional regressions of economic growth on

subjective well being are misspeci�ed by virtue of simultaneity bias induced by the MLA

index embedded in the growth series. This result has implications for economic growth

policies formulated on the basis of such models. For if the parameterto be estimated in drawn

from an � -stable process, analysts are likely to get a \policy surprise" when observed values

of the purported parameter are much larger than that predictedby their models. Preliminary

results show that the model makes empirically testable predictions about leverage e�ects that

depend on risk aversion, loss aversion, and income and consumptiongrowth in cross-sectional

asset pricing.
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APPENDIX

A APPENDIX OF PROOFS

A.1 Proof of Theorem 2.4 Standard Cauchy Spherically Symmetric

Proof. The following is a modi�ed proof ofArnold and Brockett (1992, Thm. 1). Let F (t) =

Prf Ui =Uk � tg. By symmetry, we need only consider the �rst quadrantUi > 0; Uk > 0.

Accordingly, Prf Ui =Uk � t j Ui > 0; Uk > 0g is the area under the joint density ofUi ; Uk)T

in the region 0< U i � tUk .

Figure 16: Geometry of distribution in ( Ui ; Uk ) space

  

  

  

0 

By spherical symmetry this area depends only on the angle,� = tan � 1(t), that the line

Ui = tUk , makes with the Uk axis as shown inFigure 16. Thus, F (t) = F (tan( � )) = h(� )

and Prf Ui =Uk � tg, is considered as a functionh(� ). For each point U = ( Ui ; Uk)T in R2

there corresponds a homeomorphism (i.e., mapping)H : R2 � � ! R2 of R2 into itself such

that bU = H (U ; � 1) 2 R2. Thus, there exist a point

eU = H ( bU ; � 2) = H (H (U ; � 1); � 2) (A.1)

= H (U ; � 1 + � 2) (A.2)

These operations are consistent with a transformation group withgroup operation addition

on �. Refer to Guggenheimer(1977, p. 88) for further details. Since the erstwhile group

maps into itself, there exist a group homomorphismh(� 1 + � 2) = h(� 1) + h(� 2). The group
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isomorphism implies that this must satisfy the Cauchy functional equation h(� 1 + � 2) =

h(� 1) + h(� 2). Acz�el (1966, pp. 31-32) proves thath(� ) = c � satis�es the Cauchy functional

equation. Consequently, the distribution functionF (t) = Pr f Ui =Uk � tg = h(tan � 1(t)) =

ctan� 1(t). This is the distribution function for a standard Cauchy. Thus, weprove that the

ratio Ui =Uk has a standard Cauchy distribution.

A.2 Proof of Theorem 2.5 Generalized Cauchy Elliptically Symmetric

Proof. The proof is adapted fromArnold and Brockett (1992, Thm. 2) with slight mod-

i�cation to �ll gaps. The general idea of the proof is related to transformation groups

(Guggenheimer, 1977, pp. 88-90). By hypothesis,X being elliptically symmetric implies

that it has a representation X = AU where A is invertible, and U has a symmetrically

symmetric distribution. Any two elements ofX i ; X k ; i 6= k of X can be written in matrix

form as

2

4
X i

X k

3

5 = BU (A.3)

where B is a 2 � n matrix. Under the Gram-Schmidt orthogonalization process, a set

of independent vectors (that comprise a matrix) can be mapped into a set of mutually

orthogonal and orthonormal vectors that constitute an orthonormal matrix (Gentle, 2007,

p. 27). Under theLU matrix transformation method (Gentle, 2007, p. 186), whereL is a

lower triangular matrix and U is an upper triangular matrix, there exist a 2� 2 matrix C

and an orthonormal matrix Q such that QQ T = I and B = CQ . In which case,BU =

(CQ )U = C(QU ). By virtue of orthogonality of Q, we induce the symmetrically symmetric

vector Y comprised of the pair of random variables

Y =

2

4
Y1

Y2

3

5 = QU (A.4)
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Let C =
�

a b
0 c

�
for some non-zero constantsa; b; c. Thus

X =

2

4
X i

X k

3

5 = CY =

2

4
a b

0 c

3

5

2

4
Y1

Y2

3

5 =

2

4
aY1 + bY2

cY2

3

5 (A.5)

=) X i =Xk =
� a

c

� �
Y1

Y2

�
+

�
b
c

�
(A.6)

According to Theorem 2.4,
Y1

Y2
follows a standard Cauchy law, i.e.,

Y1

Y2
� C(0; 1) by virtue

of the spherical symmetric relationship in (A.4). Hence in (A.6), X i =Xk =
a
c

C(0; 1) +
b
c

which follows a generalized Cauchy law by de�nition.

A.3 Proof of Theorem 2.6 on existence of Generalized Cauchy for MLA index

Proof. The proof follows that for Theorem 2.5 in Appendix A.2. In this case we letX i = �X L

and X k = �X G. Then substitute a for
b
c

and b for
a
c

. Thus we have �X L = �X G = bC(0; 1) + a �

C(a; b).

A.4 Proof of Theorem 3.1 Bifurcated RIH with Consumption Ratchet

Proof. For gain in income we have

Cy

Yt
= 1 � � 0 � � 1

Yt

M t
= 1 � � 0 � � 1(1 + gG

t ) (A.7)

=) Ct = Yt (1 � � 0 � � 1) � � 1gG
t Yt (A.8)

Similarly, for lossesCt = Yt (1 � � 0 � � 1) + � 1gL
t (A.9)

For no change Ct = Yt (1 � � 0 � � 1) (A.10)

Let a(d) = 1 � � 0 � � 1, � bCD
t = � � 1gG

t Yt and � t =
jgL

t j
gG

t
and the proof is done.
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A.5 Proof of Proposition 4.2 MLA index iid

Proof. By construction in (4.7), the MLA index estimator b� k� 1 is put in correspondence with

B 2k� 1; 2k . So b� k� 2 is put in correspondence withB 2k� 3; 2k� 2. Suppose that the premise of

the proposition is false. Thenb� k� 1 and b� k� 2 are correlated, for they are in correspondence

with a common element, call itx, in B 2k� 1; 2k and B 2k� 3; 2k� 2. The probability associated

with that event is given by

Prf x 2 B 2k� 3; 2k� 2 \ B 2k� 1; 2kg = Pr f x 2 B 0g (A.11)

=) Prf g = 0g = 0 (A.12)

Thus, the probability that two MLA index estimates are in correspondence with a common

element is zero. This contradicts our assumption. Hence the premise of the proposition

stands.

A.6 Proof of Proposition 4.5 MLA index is Cauchy rv

Proof. By de�nition a Cauchy processf Cu
t (! ); F tg is comprised of independent increments

(Jacobsen, 2006, p. 140). Hence

Pr
�

bct = Cu
s+ t � Cu

s 2 (dy)j bct > 0
	

=
�t

� (� 2t2 + y2)
I f bct > 0gdy (A.13)

This is the equation of a generalized Cauchy distribution with scale parameter �t . Under

Theorem 2.6 the MLA index estimator b� t also has a generalized Cauchy distribution. Thus,

bct and b� t follow the same law so that Prjb� t � bct j
p

! 0. By Slutsky's Theorem (Chow and

Teicher, 1988, p. 254) the two random variables converge to the same (Cauchy)distribution

on the same probability space.

44



B DATA APPENDIX

B.1 Loss aversion index estimate around the world

Table 7: Loss aversion indexes around the world

Country � � 
 �
Angola 0.60 1.00 0.60 1.45
Argentina 0.60 1.00 0.70 1.09
Australia 0.60 0.95 0.60 1.24
Austria 0.40 0.95 0.65 1.62
Azerbaijan 0.60 1.00 0.65 1.23
Bosnia{Herzegovina 0.65 0.90 0.45 1.00
Canada 0.50 1.00 0.50 2.00
Chile 0.55 1.00 0.65 2.00
China 0.60 1.00 0.60 1.83
Colombia 0.40 1.00 0.35 2.00
Croatia 0.60 1.00 0.45 2.33
Czech Republic 0.60 1.00 0.55 2.00
Denmark 0.50 1.00 0.65 2.00
Estonia 0.50 1.00 0.35 4.00
Georgia 0.55 1.00 0.60 5.50
Germany 0.45 1.00 0.50 2.00
Greece 0.65 0.80 0.50 2.00
Hong Kong 0.40 1.00 0.30 2.43
Hungary 0.50 1.00 0.45 2.00
Ireland 0.50 1.00 0.45 2.00
Israel 0.58 0.95 0.35 1.99
Italy 0.45 1.00 0.50 2.46
Japan 0.45 1.00 0.60 2.00
Lebanon 0.53 0.95 0.25 1.74
Lithuania 0.55 1.00 0.35 2.00
Malaysia 0.58 1.00 0.60 1.50
Mexico 0.40 1.00 0.35 1.50

Country � � 
 �
Moldova 0.65 0.95 0.65 3.44
New Zealand 0.65 0.95 0.50 1.50
Nigeria 0.75 1.00 0.50 2.00
Norway 0.55 1.00 0.55 1.83
Portugal 0.50 1.00 0.65 1.83
Romania 0.50 1.00 0.60 3.33
Russia 0.53 1.00 0.33 3.00
Slovenia 0.55 1.00 0.40 2.12
South Korea 0.60 0.95 0.70 1.37
Spain 0.45 1.00 0.60 2.38
Sweden 0.50 1.00 0.65 2.00
Switzerland 0.45 1.00 0.50 2.00
Taiwan 0.55 0.95 0.53 2.00
Thailand 0.65 0.90 0.55 3.00
Turkey 0.60 1.00 0.65 1.80
UK 0.50 1.00 0.50 1.38
USA 0.58 1.00 0.43 1.65
Vietnam 0.60 1.00 0.55 1.75

Source: Rieger et al. (2011, Table 2, p. 7)
�; � are curvature parameter for power value function;

 is the curvature parameter for probability weighting funct ion;
� is Tversky and Kahneman (1992) robust ratio scale loss aversion index.
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B.2 Plot of US Myopic Consumption Tracking Income

Figure 17: US Myopic Consumption Tracking Income
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According to Shea(1995, pp. 798-799) \Under myopia, consumption tracks current income. Thus,
the failure of the LCH/PIH should be symmetric: consumption should respond equally to
predictable income increases and decreases."
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B.3 Plot of US Real Disposable Income Growth With MLA Re
ecti on

Figure 18: US Real Disposable Income Growth With MLA E�ects
and Re
ection
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B.4 Plot of South Africa PCE Growth With MLA Re
ection

Figure 19: South Africa PCE Growth With MLA E�ects and
Re
ection
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B.5 Plots of US MLA index independence

Figure 20: US MLA index independence:
b� t2k � 1;2k vs: b� t2k � 3;2k � 2
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B.6 Plots of South Africa MLA index independence

Figure 21: South Africa MLA index independence:
b� t2k � 1;2k vs: b� t2k � 3;2k � 2
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Autoregression plots support the prediction of Proposition 4.2 that the MLA index is
independent and identically distributed.
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